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Introduction
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Non-Orthogonal Designs
An Introduction

So far, we’ve been examining 1-Way and 2-Way randomized
designs in which the sample sizes are equal in each “cell” of
the design. Such designs are said to be “orthogonal.”
We’ve digressed to examine issues of robustness to
violations of the normality and homogeneity of variances
assumption.
In this module, we tackle the problem of non-orthogonal
designs — designs in which the “contrasts” used to test for
main effects and interactions are no-longer uncorrelated
because of unequal n’s in the different cells.
Non-orthogonality poses some interesting (and still
controversial) issues for analysis and interpretation.
The following brief example will highlight some of the key
issues, both conceptual and statistical.
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A Non-Orthogonal 2× 2 ANOVA

All the F tests for main effects and interactions in a 2× 2
ANOVA can be accomplished as t− tests.
Because of the simplicity of the design, we can see some
important points that generalize to 2-Way ANOVA’s with
more than 2 levels per factor.
Scott Maxwell, in Chapter 7 of his classic textbook
Designing Experiments and Analyzing Data, gives the
following interesting example.
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A Non-Orthogonal 2× 2 ANOVA

Suppose that our data consists of 22 female and male
employees of a large company. They are further divided
into those with a college degree, and those without a
degree.
The dependent variable is the employee’s annual salary, in
thousands of dollars.
The raw data are shown below, and have been provided in
the file Salary.csv.
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A Non-Orthogonal 2× 2 ANOVA

> salary <- read.csv("Salary.csv")

> salary

Gender Degree Salary Group

1 Female College 24 FemaleCollege

2 Female College 26 FemaleCollege

3 Female College 25 FemaleCollege

4 Female College 24 FemaleCollege

5 Female College 27 FemaleCollege

6 Female College 24 FemaleCollege

7 Female College 27 FemaleCollege

8 Female College 23 FemaleCollege

9 Female No College 15 FemaleNoCollege

10 Female No College 17 FemaleNoCollege

11 Female No College 20 FemaleNoCollege

12 Female No College 16 FemaleNoCollege

13 Male College 25 MaleCollege

14 Male College 29 MaleCollege

15 Male College 27 MaleCollege

16 Male No College 19 MaleNoCollege

17 Male No College 18 MaleNoCollege

18 Male No College 21 MaleNoCollege

19 Male No College 20 MaleNoCollege

20 Male No College 21 MaleNoCollege

21 Male No College 22 MaleNoCollege

22 Male No College 19 MaleNoCollege

> attach(salary)
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Here is a table of cell means for the data.

  Degree 
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Assessing Gender Discrimination

Suppose that these data were gathered in an attempt to
assess at this company, the following questions:

1 Are men are paid more than women?
2 Are people with college degrees paid more than people

without degrees?

It turns out that there are different ways of viewing the
data that lead to different answers to these questions.
Let’s see why.
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Assessing Gender Discrimination

Suppose we look at the table of cell means and try to
roughly assess the first question by examining the main
effect for Gender.
We compare the row means for Gender = Male and
Gender = Female, averaging across college degree status.
The average of the two Female means is (25 + 17)/2 = 21.
The average of the two Male means is (27 + 20)/2 = 23.5.
These row means are called the unweighted row means,
because they are computed from the cell means without
weighting them by the sample sizes for the cells.
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So the Female−Male difference is 21− 23.5 = −2.5. The
average of the 4 overall cell means is
(25 + 17 + 27 + 20)/4 = 22.25. In the classic ANOVA
model, the main effect of being Female is −1.25 relative to
the overall mean, while the main effect of being Male is
+1.25 relative to the overall mean. The difference in the
effects is −2.5.
This suggests that, in general, being Female is associated
with a $2500 negative salary differential.
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This agrees with well-established theory.
Each of the sample cell means is an unbiased estimator of
the corresponding population cell mean, and we learned in
Psychology 310 that we can test the main effect of Gender
by testing the null hypothesis

H0 :
µ11 + µ12

2
=
µ21 + µ22

2
(1)

or, equivalently

H0 : ψGender = µ11 + µ12 − µ21 − µ22 = 0 (2)

An unbiased estimator of the quantity of interest is

ψ̂Gender = Ȳ11 + Ȳ12 − Ȳ21 − Ȳ22 (3)

James H. Steiger Non-orthogonal Designs



Introduction
A Non-Orthogonal 2 × 2 ANOVA

ANOVA Computations in R
Which Method to Use?

Assessing Gender Discrimination
Another Look at the Gender Effect

Assessing Gender Discrimination

This agrees with well-established theory.
Each of the sample cell means is an unbiased estimator of
the corresponding population cell mean, and we learned in
Psychology 310 that we can test the main effect of Gender
by testing the null hypothesis

H0 :
µ11 + µ12

2
=
µ21 + µ22

2
(1)

or, equivalently

H0 : ψGender = µ11 + µ12 − µ21 − µ22 = 0 (2)

An unbiased estimator of the quantity of interest is
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Assessing Gender Discrimination

The standard t statistic for testing the null hypothesis of
Equation 3 is

t =
ψ̂√

(1/n11 + 1/n12 + 1/n21 + 1/n22)σ̂2
(4)

where σ̂2, called MSerror, MSresiduals, or MSS|cells in
various ANOVA texts, is given (for a levels of factor A and
b levels of factor B) by

σ̂2 =

∑
(nij − 1)s2

ij∑
nij − ab

(5)

It is well known that, if you square a t statistic, you get an
F statistic with 1 numerator degree of freedom, and
denominator degrees of freedom equal to those of the t
statistic.
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Squaring our t statistic, and inverting part of the
denominator and moving it to the numerator,we get

F =
ñψ̂2

σ̂2
(6)

where ñ is the harmonic mean of the nij , given by

ñ =
1∑
ij

1
nij

(7)

We can show that ψ̂2 is equal to b times the variance of the
unweighted row means shown in our previous calculations,
and so we may write

Fgender =
bñs2

Ȳj•

σ̂2
=

s2
Ȳj•

σ̂2/bñ
(8)

So, once again, we see that the main effect for factor A is
assessed by comparing the sample variance of the
(unweighted) row means with an estimate of the variance
of the row means, given by an estimate of σ2 divided
the“effective n” for the row means.
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We can calculate σ̂2 quickly in R as follows:

> var11 <- var(Salary[Group=="FemaleCollege"])

> var12 <- var(Salary[Group=="FemaleNoCollege"])

> n11 <- length(Salary[Group=="FemaleCollege"])

> n12 <- length(Salary[Group=="FemaleNoCollege"])

> var21 <- var(Salary[Group=="MaleCollege"])

> var22 <- var(Salary[Group=="MaleNoCollege"])

> n21 <- length(Salary[Group=="MaleCollege"])

> n22 <- length(Salary[Group=="MaleNoCollege"])

> sigma.hat.squared <- ((n11-1)*var11 + (n12-1)*var12 +

+ (n21-1)*var21 + (n22-1)*var22)/(n11+n12+n21+n22-4)

> n.tilde <- 4/(1/n11 + 1/n12 + 1/n21 + 1/n22)

> F.stat <-2*n.tilde*var(c(21,23.5))/sigma.hat.squared

> F.stat

[1] 10.57343

> df <- n11+n12+n21+n22-4

> df

[1] 18

> pvalue <- 1 - pf(F.stat,1,df)

> pvalue

[1] 0.004428981

Our F statistic for the main effect of Gender is therefore
10.57, and is significant beyond the 0.01 level.
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Seeking to verify our calculation with R, we set up the
standard ANOVA.

> fit.1 <- lm(Salary ~ Gender * Degree)

> anova(fit.1)

Analysis of Variance Table

Response: Salary

Df Sum Sq Mean Sq F value Pr(>F)

Gender 1 0.297 0.297 0.1069 0.7475

Degree 1 272.392 272.392 98.0611 1.038e-08 ***

Gender:Degree 1 1.175 1.175 0.4229 0.5237

Residuals 18 50.000 2.778

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

What? Instead of a highly significant F , we obtain a value
of 0.1069, with a p-value of 0.7475. What did we do wrong?
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Another Look at the Gender Effect

The answer is — in a sense, nothing.
Welcome to the world of unbalanced designs and Types
I,II,and III (not to mention IV) Sums of Squares!
R did not provide the answer we expected because, by
default, R computes its ANOVA using Type I Sums of
Squares. Other programs, such as SAS and SPSS, analyze
unbalanced ANOVA designs using Type III Sums of
Squares by default.
We can force R to override its default in several ways, and
in a subsequent section I shall demonstrate two of them.
But first, let’s examine another way to think of the salary
data analysis.
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Our previous analysis did not weight the individual cell
means in the two columns when estimating the two row
means.
For example, when estimating the mean salary for females,
we simply averaged the two row means of 25 and 17,
obtaining an estimate of 21.
But suppose the sample sizes in the two cells (i.e., 8 and 4)
actually represented the relative proportions of women who
have college degrees and do not have college degrees. Then,
in order to properly estimate the overall average salary for
women in the population, we would have to weight the two
sample means.
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In that case, our weighted estimate of the first row mean
would be

n11Ȳ11 + n12Ȳ12

n11 + n12
=

2

3
25 +

1

3
17 = 22.3333 (9)

Correspondingly, the weighted estimate of the second row
mean is

n21Ȳ21 + n22Ȳ22

n21 + n22
=

3

10
27 +

7

20
20 = 22.1 (10)

Something truly interesting has been revealed. Note that,
although college educated women earn less than their male
counterparts, and non-college educated women earn less
than their male counterparts, in the data as a whole,
women average higher income than men!
This is an example of Simpson’s Paradox.
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n11Ȳ11 + n12Ȳ12
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Suppose we were to test for the main effect of Gender as
before, except this time using weights.
We first construct the t statistic. But this time, the null
hypothesis is

n11

n1•
µ11 +

n12

n1•
µ12 =

n21

n2•
µ21 +

n22

n2•
µ22 (11)

We’ll load in a brief function to compute the t statistic,
and feed it our data for analysis.
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> GeneralizedT<-function(means,sds,ns,wts,k0=0)

+ {

+ J<-length(means)

+ df<-sum(ns)-J

+ VarEstimate <- sum((ns-1)*sds^2)/df

+ num<-sum(wts*means)-k0

+ den<-sqrt(sum(wts^2/ns)*VarEstimate)

+ t<-num/den

+ return(c(t,df))

+ }

> GeneralizedT(c(25,17,27,20),sqrt(c(2.285714,4.666667,4,2)),

+ c(8,4,3,7),c(2/3,1/3,-3/10,-7/10))

[1] 0.3269696 18.0000000

If we square the resulting t statistic, we obtain the F
statistic given by the ANOVA analysis.

> GeneralizedT(c(25,17,27,20),sqrt(c(2.285714,4.666667,4,2)),

+ c(8,4,3,7),c(2/3,1/3,-3/10,-7/10))[1]^2

[1] 0.1069091
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Suppose we now use the same approach to assess the effect
of Degree on Salary.

> GeneralizedT(c(25,17,27,20),sqrt(c(2.285714,4.666667,4,2)),

+ c(8,4,3,7),c(8/11,-4/11,3/11,-7/11))[1]^2

[1] 87.20182

This F is highly significant, but it does not agree with the
F value of 98.0611 shown in our ANOVA table. What
happened?
Type I sums of squares, it turns out, are order dependent,
and effects are processed in the order given in the model
statement.
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So, if we reverse the order of Degree and Gender in the
model specification, we obtain an F of 87.2, agreeing with
our t test-based analysis.

> fit.2 <- lm(Salary ~ Degree * Gender)

> anova(fit.2)

Analysis of Variance Table

Response: Salary

Df Sum Sq Mean Sq F value Pr(>F)

Degree 1 242.227 242.227 87.2018 2.534e-08 ***

Gender 1 30.462 30.462 10.9662 0.003881 **

Degree:Gender 1 1.175 1.175 0.4229 0.523690

Residuals 18 50.000 2.778

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Why does order matter in the case of non-orthogonal
designs, while it doesn’t change the results when sample
sizes are equal?
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Type I sums of squares are based on a sequential modeling
approach, using multiple regression.
When predictors in multiple regression are uncorrelated, or
orthogonal, then the effect of a predictor does not depend
on other predictors in the equation, so order makes no
difference.
However, if they are not uncorrelated, the result of a
significance test for a particular predictor depends on the
order in which it was entered into the model.
We can show that, in this case, however, the contrasts are
not orthogonal. If we assume that each of our means has
variance σ2/nij , then we can compute the covariance
between the contrasts computed for the Gender and
Degree main effects.
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Covariance between Contrasts

Recall from our early discussion of linear combinations
that, if group means are independent, we can compute the
covariance between linear combinations without worrying
covariances between different means.
In this case, the sample based estimates of the two linear
combinations are

ψ̂Gender =
2

3
Ȳ11 +

1

3
Ȳ12 −

3

10
Ȳ21 −

7

10
Ȳ22

ψ̂Degree =
8

11
Ȳ11 −

4

11
Ȳ12 +

3

11
Ȳ21 −

7

11
Ȳ22

Using the “heuristic rule,” we can calculate the covariance
between the two linear combinations by taking products
and applying the conversion rule.

Cov
(
ψ̂Degree, ψ̂Gender

)
=

8× 2

3× 11

σ2

n11
− 4× 1

3× 11

σ2

n12
− 3× 3

11× 11

σ2

n21
+

8× 7

11× 11

σ2

n22

=
8× 2

3× 11

σ2

8
− 4× 1

3× 11

σ2

4
− 3× 3

11× 11

σ2

3
+

8× 7

11× 11

σ2

7

=

(
2

33
− 1

33
− 3

121
+

8

121

)
σ2

= 26/363
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Type III Sums of Squares

It is easy to verify that, with equal sample sizes, the
corresponding contrasts have zero covariance and are
orthogonal.
Note that the latter depends on equality of variances as
well as equality of sample sizes.
We saw in the preceding section how the default anova
procedure in R generates a hierarchical,
weighted-means-based analysis. Results depend on the
order in which terms are entered into the model equation.
The sums of squares for this type of analysis are called
Type I Sums of Squares, a nomenclature that is believed to
have originated with SAS.
The alternative approach, based on unweighted-means, is
non-hierarchical, and is referred to as Type III Sums of
Squares. In this approach, sums of squares are based on
the dropping of only one term at a time from the full
model, rather than dropping a sequence of terms.
Consequently, the results of the analysis do not depend on
the order terms were entered into the model.
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Here, we demonstrate with our analyses of Gender and
Degree main effects, how to obtain the classic Type III
Sums of Squares with unbalanced data.

> options(contrasts = c("contr.sum","contr.poly"))

> fit <- lm(Salary ~ Gender * Degree)

> drop1(fit,~.,test="F")

Single term deletions

Model:

Salary ~ Gender * Degree

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 50.000 26.062

Gender 1 29.371 79.371 34.228 10.5734 0.004429 **

Degree 1 264.336 314.336 64.507 95.1608 1.306e-08 ***

Gender:Degree 1 1.175 51.175 24.573 0.4229 0.523690

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> fit2 <- lm(Salary ~ Degree * Gender)

> drop1(fit2,~.,test="F")

Single term deletions

Model:

Salary ~ Degree * Gender

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 50.000 26.062

Degree 1 264.336 314.336 64.507 95.1608 1.306e-08 ***

Gender 1 29.371 79.371 34.228 10.5734 0.004429 **

Degree:Gender 1 1.175 51.175 24.573 0.4229 0.523690

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Type II Sums of Squares

Here, we demonstrate with our analyses of Gender and
Degree main effects, how to obtain the Type II Sums of
Squares with unbalanced data. First, the car library must
be loaded. Then, the Anova command must be invoked,
with the Type=2 (or, alternatively, Type="II") option.

> options(contrasts = c("contr.sum","contr.poly"))

> fit <- lm(Salary ~ Gender * Degree)

> Anova(fit,type=2)

Anova Table (Type II tests)

Response: Salary

Sum Sq Df F value Pr(>F)

Gender 30.462 1 10.9662 0.003881 **

Degree 272.392 1 98.0611 1.038e-08 ***

Gender:Degree 1.175 1 0.4229 0.523690

Residuals 50.000 18

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Type III Sums of Squares with the car Library

In a similar manner, one may analyze Gender and Degree
main effects, with the Type III Sums of Squares with
unbalanced data. First, the car library must be loaded.
Then, the Anova command must be invoked, with the
Type=3 (or, alternatively, Type="III") option.

> options(contrasts = c("contr.sum","contr.poly"))

> fit <- lm(Salary ~ Gender * Degree)

> Anova(fit,type=3)

Anova Table (Type III tests)

Response: Salary

Sum Sq Df F value Pr(>F)

(Intercept) 9305.8 1 3350.0845 < 2.2e-16 ***

Gender 29.4 1 10.5734 0.004429 **

Degree 264.3 1 95.1608 1.306e-08 ***

Gender:Degree 1.2 1 0.4229 0.523690

Residuals 50.0 18

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Introduction

Clearly, when analyzing unbalanced designs, which method
(Type I or Type III) is employed can have a substantial
effect on the results.
Since we haven’t yet gotten to the later chapters in the
textbook that discuss multiple regression and its
relationship to ANOVA, we should defer some of the more
technical discussion comparing the two methods.
At that time, we’ll discuss in detail that there are actually
4 methods (Types I, II, III, and IV).
Type IV sums of squares are an extension of Type III
designed to specifically handle the case in which entire cells
in the factorial design have no observations, either by
happenstance or because they are technically or ethically
unfeasible.
Type II sums of squares are an adaptation of Type I that
eliminates the dependence on the order terms are listed in
the model.
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Since we haven’t yet gotten to the later chapters in the
textbook that discuss multiple regression and its
relationship to ANOVA, we should defer some of the more
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At that time, we’ll discuss in detail that there are actually
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A number of resources on the internet list situations in
which the various methods yield identical results. The first
point is that, if cell sample sizes are equal, all methods are
equivalent.
In the case of unequal cell sizes, the following relationships
hold in a 2-way factorial design (assuming that the terms
in the model are entered in the order A,B,AB.

Effect Equivalence Relationship 

A III=IV 

B I=II, III=IV 

AB I=II=III=IV 
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ANOVA calculations can be accomplished in a multiple
regression context, and sums of squares are actually
differences in the sum of squared residuals obtained from
fitting two nested models in multiple regression.
When a qualitative variable (i.e., a “factor”) is involved,
the predictors are specially coded variables.
The table below shows how sums of squares are calculated
for the different terms in a 2-factor ANOVA.
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 Sums of Squares (All Models Include Intercept) 

Term Type I SS Type II SS Type III SS 

A SS(A) = R() – R(A) SS(A|B) = R(B) – R(A,B) SS(A|B,AB) = R(B,AB) – R(A,B,AB) 

B SS(B|A) = R(A) – R(A,B) SS(B|A) = R(A) – R(A,B) SS(B|A,AB) = R(A,AB) – R(A,B,AB) 

AB SS(AB|A,B) = R(A,B) – R(A,B,AB) SS(AB|A,B) = R(A,B) – R(A,B,AB) SS(AB|A,B) = R(A,B) – R(A,B,AB) 
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The Venn diagram on the next page represents the fact
that the overall sources of variation in the 2-Way factorial
design are not generally orthogonal with unequal n.
Following Rudolf Cardinal’s excellent webpage, we can gain
some insight into the meaning of the various SS methods
as follows.
Again, assuming A is first in the model specification, Type
I SS (“sequential”) has

1 SSA = t+ u+ v + w
2 SSB = x+ y
3 SSAB = z

This asks the questions: what’s the whole effect of A
(ignoring B)? What’s the effect of B, over and above the
effect of A? What’s the effect of the AB interaction, over
and above the effects of A and B? These could be written
as tests of A, and B|A, and AB|A,B.
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Type II SS (“hierarchical”):
1 SSA = t+ w
2 SSB = x+ y
3 SSAB = z

This adjusts terms for all other terms except higher-order
terms including the same predictors (in this example,
adjusting the main effects of A and B for each other, but
not for the interaction).
By “adjust for”, we mean “not include any portion of the
variance that overlaps with”. These could be written as
tests of A|B, and B|A, and AB|A,B.

James H. Steiger Non-orthogonal Designs



Introduction
A Non-Orthogonal 2 × 2 ANOVA

ANOVA Computations in R
Which Method to Use?

Introduction
Comparisons of the Methods
Selection of a Method

Comparisons of the methods
Calculation Procedures

Type II SS (“hierarchical”):
1 SSA = t+ w
2 SSB = x+ y
3 SSAB = z

This adjusts terms for all other terms except higher-order
terms including the same predictors (in this example,
adjusting the main effects of A and B for each other, but
not for the interaction).
By “adjust for”, we mean “not include any portion of the
variance that overlaps with”. These could be written as
tests of A|B, and B|A, and AB|A,B.

James H. Steiger Non-orthogonal Designs



Introduction
A Non-Orthogonal 2 × 2 ANOVA

ANOVA Computations in R
Which Method to Use?

Introduction
Comparisons of the Methods
Selection of a Method

Comparisons of the methods
Calculation Procedures

Type II SS (“hierarchical”):
1 SSA = t+ w
2 SSB = x+ y
3 SSAB = z

This adjusts terms for all other terms except higher-order
terms including the same predictors (in this example,
adjusting the main effects of A and B for each other, but
not for the interaction).
By “adjust for”, we mean “not include any portion of the
variance that overlaps with”. These could be written as
tests of A|B, and B|A, and AB|A,B.

James H. Steiger Non-orthogonal Designs



Introduction
A Non-Orthogonal 2 × 2 ANOVA

ANOVA Computations in R
Which Method to Use?

Introduction
Comparisons of the Methods
Selection of a Method

Comparisons of the methods
Calculation Procedures

Type II SS (“hierarchical”):
1 SSA = t+ w
2 SSB = x+ y
3 SSAB = z

This adjusts terms for all other terms except higher-order
terms including the same predictors (in this example,
adjusting the main effects of A and B for each other, but
not for the interaction).
By “adjust for”, we mean “not include any portion of the
variance that overlaps with”. These could be written as
tests of A|B, and B|A, and AB|A,B.

James H. Steiger Non-orthogonal Designs



Introduction
A Non-Orthogonal 2 × 2 ANOVA

ANOVA Computations in R
Which Method to Use?

Introduction
Comparisons of the Methods
Selection of a Method

Comparisons of the methods
Calculation Procedures

Type II SS (“hierarchical”):
1 SSA = t+ w
2 SSB = x+ y
3 SSAB = z

This adjusts terms for all other terms except higher-order
terms including the same predictors (in this example,
adjusting the main effects of A and B for each other, but
not for the interaction).
By “adjust for”, we mean “not include any portion of the
variance that overlaps with”. These could be written as
tests of A|B, and B|A, and AB|A,B.

James H. Steiger Non-orthogonal Designs



Introduction
A Non-Orthogonal 2 × 2 ANOVA

ANOVA Computations in R
Which Method to Use?

Introduction
Comparisons of the Methods
Selection of a Method

Comparisons of the methods
Calculation Procedures

Type II SS (“hierarchical”):
1 SSA = t+ w
2 SSB = x+ y
3 SSAB = z

This adjusts terms for all other terms except higher-order
terms including the same predictors (in this example,
adjusting the main effects of A and B for each other, but
not for the interaction).
By “adjust for”, we mean “not include any portion of the
variance that overlaps with”. These could be written as
tests of A|B, and B|A, and AB|A,B.

James H. Steiger Non-orthogonal Designs



Introduction
A Non-Orthogonal 2 × 2 ANOVA

ANOVA Computations in R
Which Method to Use?

Introduction
Comparisons of the Methods
Selection of a Method

Comparisons of the methods
Calculation Procedures

James H. Steiger Non-orthogonal Designs



Introduction
A Non-Orthogonal 2 × 2 ANOVA

ANOVA Computations in R
Which Method to Use?

Introduction
Comparisons of the Methods
Selection of a Method

Comparisons of the methods
Calculation Procedures

Type III SS (“marginal”, “orthogonal”)
1 SSA = t
2 SSB = x
3 SSAB = z

This assesses the contribution of each predictor over and
above all others. These could be written as tests of
A|B,AB, and B|A,AB, and AB|A,B.
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Some other Relevant Points

As we have seen, Type I and Type III sums of squares test
different hypotheses. This fact, for most users, probably
takes precedence over other arguments advanced in favor of
one method or another.
However, main effects only make sense when there is no
interaction. Moreover, the marginality principle in multiple
regression states that interactions should only be
considered in models that include all effects subordinate to
the interaction. Type III sums of squares test main effects
for factor A by removing A from a model that still included
the AB interaction. This is seen as a violation of the
marginality principle.
Type II sums of squares are designed to test A and B main
effects with maximum power when there is no interaction
between A and B.
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Selection of a Method

If there is any consensus among statisticians, it is probably
in favor of Type III SS in most situations.
However, different major “authorities” have come down
strongly in favor of one method or another.
Which method you choose depends on your scientific
priorities.
Clearly, if you have no priorities, or if you don’t understand
the methods, it is impossible to make an intelligent choice.
SPSS and SAS use Type III SS by default. Some editors
will not give you a choice, but will demand that you use
Type III for “compatibility” with SPSS and SAS.
If there is no interaction effect, Type II SS will probably
give you more power than Type III SS, while maintaining
the marginality principle. However, there is always the
chance that you are committing a Type II error by failing
to reject the hypothesis of no interaction, in which case the
additional power is illusory.
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